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We present a systematic study of the statistics of the occupation time and
related random variables for stochastic processes with independent intervals of
time. According to the nature of the distribution of time intervals, the probabil-
ity density functions of these random variables have very different scalings in
time. We analyze successively the cases where this distribution is narrow, where
it is broad with index h < 1, and finally where it is broad with index 1 < h < 2.
The methods introduced in this work provide a basis for the investigation of the
statistics of the occupation time of more complex stochastic processes (see joint
paper by G. De Smedt, C. Godrèche, and J. M. Luck (26)).
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1. INTRODUCTION

The question of determining the distribution of the occupation time of
simple stochastic processes has been well debated by probabilists in the
past. (1–5) The simplest example is that of the binomial random walk, or, in
its continuum version, of Brownian motion. Let xt be the position of the
walker at time t, where t is an integer, for the random walker, or a contin-
uous variable, for Brownian motion. Then define the stochastic process
st=sign xt. The occupation times T+

t and T −
t are the lengths of time spent



by the walker, respectively on the right side, or on the left side of the
origin, up to time t (using continuous time):

T ±
t =F

t

0
dtŒ
1±stŒ
2

. (1.1)

It is also convenient to define the more symmetrical quantity

St=tMt=F
t

0
dtŒstŒ=T+

t −T
−
t . (1.2)

Mt, the mean of the stochastic process st, will be hereafter referred to as
the mean magnetization, by analogy with physical situations where st is the
spin at a given point of space.

A classical result, due to P. Lévy, is that the limiting distribution of the
fraction of time spent by the walker on one side of the origin up to time t,
as tQ., is given by the arcsine law3

3 See appendix A for the notation.

lim
tQ.

ft−1T± (x)=
1

p`x(1−x)
(0 < x < 1) (1.3)

or equivalently, for the mean magnetization,

fM(x)=
1

p`1−x2
(−1 < x < 1). (1.4)

The interpretation of this result is that, contrarily to intuition, the
random walker spends most of its time on one side of the origin. Trans-
lated into the language of a game of chance, this amounts to saying that
one of the players is almost always winning, or almost always loosing, a
situation which can be summarized by the ‘‘persistence of luck, or of bad
luck’’.

On the other hand, a well-known result is that the probability for the
random walker to remain on one side of the origin up to time t, i.e., for the
stochastic process st not to change sign up to time t, decays as t −

1
2, which

defines the first-passage exponent 1
2 . The identity between this exponent

and that characterizing the singularity of the probability density functions
(1.3, 1.4) for xQ 1 is not coincidental. Both exponents are actually intima-
tely related, as will be explained later in more generality.

The stochastic process st defined above is simple in two respects.
Firstly, the steps of the walker, or the increments of Brownian motion, are
independent. Secondly, the process is zero-dimensional, in the sense that it
does not interact with other processes.
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The question of phase persistence for self-similar growing systems,
which appeared more recently in statistical physics, is a natural generaliza-
tion of the probabilistic problem presented above. The physical systems
in consideration are for instance breath figures, the pattern formed by
growing and coalescing water droplets on a plane; (6, 7) systems of spins
quenched from high temperature to zero temperature, or more generally to
the low-temperature phase; (8) or the diffusion field evolving in time from a
random initial condition. (9) The question posed is: what fraction of space
remained in the same phase up to time t, or equivalently, what is the prob-
ability for a given point of space to remain in this phase. In this context,
the stochastic process st is, for instance, the indicator of whether a given
point of space is in the dry phase for the breath figure experiment, the
spin at a given site of a lattice for the zero-temperature kinetic Ising
model, or the sign of the field at a given point in space for the diffusion
equation.

In these cases, the probability for a given point of space to remain in a
given phase is equal to the probability p0(t) that the process st did not
change sign up to time t, or persistence probability. For these situations,
and similar ones, p0(t) decays algebraically with an exponent h, the persis-
tence exponent, which plays the role in the present context of the first-
passage exponent 1

2 of the random walk.
Phase persistence is far more complex than the simple case of the per-

sistence of luck for the random walker, because the physical systems con-
sidered are spatially extended. Thus, the stochastic process st, which is
defined at a given point of space, interacts with similar processes at other
points of space. As a consequence, the persistence exponent h is usually
hard to determine analytically.

Pursuing the parallel with the random walk, one may wonder, for the
physical systems where phase persistence is observed, what is the behavior
of the distribution of the occupation time (1.1), or of the mean magnetiza-
tion (1.2).

For the zero-temperature Glauber-Ising chain, (10) the diffusion equa-
tion, (10, 11) the two-dimensional Ising model, (12) or for growing surfaces, (13)

non-trivial U-shaped distributions fM are observed. The singularity expo-
nent of these distributions, as Mt Q ±1, gives the persistence exponent,
thus providing a stationary definition of persistence, even at finite tem-
perature. (12) The only analytical results at our disposal for these examples is
for the diffusion equation, using the so-called independent-interval
approximation. (10) However, understanding the origin of the existence of a
limiting distribution is easy. In the long-time regime the two-time auto-
correlation is a function of the ratio of the two times. Therefore the
variance ofMt remains finite (see equation (9.3) below and ref. 10).
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Another case of interest is the voter model. The investigation of the
distribution of the occupation time for this model was introduced by Cox
and Griffeath (14) (see ref. 15 for a summary). In contrast with the former
examples, persistence is not algebraic for this case, (16, 17) and the distribution
fM is slowly peaking with time (OM2

tP ’ 1/ln t). This is akin to what occurs
in the Ising model quenched from high temperature to the critical point.
The explanation is the same in both cases: the two-time autocorrelation is
the product of a scaling function of the ratio of the two times by a prefac-
tor depending on one of the two times. In the case of the Ising model, this
prefactor is related to the anomalous dimension of the field at criticality
(see equation (10.7) below and ref. 18). As a consequence, the variance of
Mt is slowly decreasing in time (OM2

tP ’ t −2b/nzc). Let us recall that the
voter model is critical. (19) The slow peaking of fM for both models is the
signature of criticality.

To summarize at this point, there is a strong analogy between the per-
sistence of luck for the random walk, and phase persistence for self-similar
coarsening systems. However, for the latter, both the first-passage (or per-
sistence) exponent h and the limiting distributions limtQ. ft−1T± (x) and
fM(x) are difficult to determine analytically.

Therefore, instead of considering spatially extended coarsening
systems, we adopt the strategy of investigating simpler (zero-dimensional)
stochastic processes, where the persistence exponent is a parameter in the
definition of the model, yet where the distribution of the occupation time,
or of the magnetization, is non-trivial. So doing we shall gain a better
understanding of the nature of the persistent events encoded in these dis-
tributions, and shall be better prepared to investigate the statistics of the
occupation time for the more difficult statistical mechanical models.

The present work is devoted to the study of a first example of this
category of problems, where the stochastic process st is generated by a
renewal process, defined as follows. Events occur at the random epochs of
time t1, t2, ..., from some time origin t=0. These events are considered as
the zero crossings of the stochastic process st=±1. We take the origin of
time on a zero crossing. This process is known as a point process. When the
intervals of time between events, y1=t1, y2=t2−t1, ..., are independent
and identically distributed random variables with density r(y), the process
thus formed is a renewal process. Hereafter we shall use indifferently the
denominations: events, zero crossings or renewals.

In this model the persistence probability p0(t), that is the probability
that no event occurred up to time t, is simply given by the tail probability:

p0(t)=P(y > t)=F
.

t
dy r(y). (1.5)
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The approach we use is systematic and applies to any distribution r.
In what follows r will be either a narrow distribution with finite moments,
in which case the decay of p0(t), as tQ., is faster than any power law, or
a broad distribution characterized by a power-law fall-off with index h:

F
.

t
dy r(y) % 1y0

t
2h (0 < h < 2), (1.6)

where y0 is a microscopic time scale. If h < 1 all moments of r are
divergent, while if 1 < h < 2, the first moment OyP is finite but higher
moments are divergent. In Laplace space, where s is conjugate to y, for a
narrow distribution we have

L
y
r(y)=r̂(s) =

sQ 0
1−OyP s+1

2 Oy
2P s2+· · · (1.7)

For a broad distribution, (1.6) yields

r̂(s) %
sQ 0

31−a s
h (h < 1)

1−OyP s+a sh (1 < h < 2),
(1.8)

with a=|C(1−h)| yh0.
The case h=1

2 accounts for Brownian motion. Indeed, as is well
known, the distribution of first-passage times by the origin behaves at large
times as y −

3
2 , i.e., is in the basin of attraction of a Lévy law of index 1

2 .
(20)

This can be simply worked out in the case of the random walk, where the
discreteness of time allows a natural regularization of the process at short
times. Hence, since we are interested in universal asymptotic properties of
the distribution of the mean magnetization, the description of Brownian
motion by a renewal process with distribution of intervals given by (1.6) or
(1.8), with index h=1

2 , is faithful.
Finally, let us give the content of the present work and stress its

originality.
Though the study of renewal processes is classical, (20–22) fewer refer-

ences are devoted to renewal processes with broad distributions of inter-
vals. Elements on this question can be found in refs. 20 and 23. The present
work provides a systematic account of the theory. In particular we perform
the scaling analysis of the distributions of the various random variables
naturally occurring in a renewal process, such as the number of events
between 0 and t, the epoch of the last event before t, the backward and
forward times. We also analyze the aging (i.e., non-stationary) properties of
the distribution of the number of events occurring between two arbitrary
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instants of time and of the two-time correlation function, for the case of a
broad distribution r with h < 1.

The study of the limiting distribution of the occupation time of
renewal processes is the subject of the work of Lamperti. (5) His main result
is the expression of this distribution for a broad law of intervals r, with
h < 1 (see equation (7.10) below). This result is recovered by a simple
method in ref. 24, for the case where r is a stable Lévy distribution of
intervals, with h < 1. However neither the work of Lamperti, nor ref. 24,
contain the analysis of the scaling of this quantity for the case 1 < h < 2.
The present work fills this gap.

Finally, the methods used in the present work provide a firm basis to
the investigation of the distribution of the occupation time for the process
with time-dependent noise considered in ref. 25. This model is a second
example of the category of problems mentioned above. There again, the
existence of a renewal process in the model plays a crucial role. This will be
the subject of a joint paper. (26) Both examples, the renewal processes con-
sidered in the present work, and that just mentioned, are deformations of
the binomial random walk, or in continuous time, of Brownian motion.
However they lead to non-trivial limiting distributions of the occupation
time and of related quantities, as tQ..

2. OBSERVABLES OF INTEREST

Let us introduce the quantities, the distributions of which will be
computed in the following sections.

First, the number of events which occurred between 0 and t, denoted
by Nt, is the random variable for the largest n for which tn [ t. The time of
occurrence of the last event before t, that is of the Nt-th event, is therefore4

4 We drop the time dependence of the random variable when it is in subscript.

tN=y1+· · ·+yN.

The backward recurrence time Bt is defined as the length of time
measured backwards from t to the last event before t, i.e.,

Bt=t−tN,

while the forward recurrence time (or excess time) Et is the time interval
between t and the next event,

Et=tN+1−t.
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The occupation times T+
t and T −

t , i.e., the lengths of time spent by the
s-process, respectively in the + and − states, up to time t, were defined in
the introduction as

T ±
t =F

t

0
dtŒ
1±stŒ
2

,

hence t=T+
t +T

−
t . They are simply related to the sum St by

St=F
t

0
dtŒstŒ=T+

t −T
−
t =2T+

t −t=t−2T −
t .

Assume that st=0=+1. Then

T+
t =y1+y3+· · ·+yN

T −
t =y2+y4+· · ·+yN−1+Bt

4 if Nt=2k+1 (i.e., st=−1) (2.1)

and

T+
t =y1+y3+· · ·+yN−1+Bt

T −
t =y2+y4+· · ·+yN

4 if Nt=2k (i.e., st=+1). (2.2)

Assume now that st=0=−1. Then, with obvious notations, the following
relation holds

T ±
t (st=0=−1)=T +t (st=0=+1), (2.3)

hence

St(st=0=−1)=−St(st=0=+1). (2.4)

Finally we shall also be interested in two-time quantities, namely the
number of zero crossings which occurred between t and t+tŒ, given by
N(t, t+tŒ)=Nt+tŒ−Nt, and the two-time autocorrelation of the process st,
defined as C(t, t+tŒ)=Ostst+tŒP.

3. NUMBER OF RENEWALS BETWEEN 0 AND t

The probability distribution of the number of events Nt between 0 and
t reads

pn(t)=P(Nt=n)=P(tn < t < tn+1)=OI(tn < t < tn+1)P (n \ 0),
(3.1)
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where I(tn < t < tn+1)=1 if the event inside the parenthesis occurs, and 0 if
not. Note that t0=0. The brackets denotes the average over y1, y2, ... The
case n=0 is accounted for by equation (1.5).

Laplace transforming equation (3.1) with respect to t yields

L
t
pn(t)=p̂n(s)=7F

tn+1

tn
dt e −st8=7e −stn

1− e −syn+1

s
8 (n \ 0), (3.2)

and therefore

p̂n(s)=r̂(s)n
1− r̂(s)
s

(n \ 0). (3.3)

This distribution is normalized since ;.

n=0 p̂n(s)=1/s.
From (3.3) one can easily obtain the moments of Nt in Laplace space.

For instance

L
t
ONtP=C

.

n=1
np̂n(s)=

r̂(s)
s(1− r̂(s))

, (3.4)

L
t
ON2

tP=C
.

n=1
n2p̂n(s)=

r̂(s)(1+r̂(s))
s(1− r̂(s))2

. (3.5)

We now discuss the above results according to the nature of the dis-
tribution of intervals r(y).

(i) Narrow distributions of intervals
Expanding (3.4) and (3.5) as series in s, and performing the inverse

Laplace transform term by term, yields

ONtP %
tQ.

t
OyP

+c1,

ON2
tP−ONtP

2 %
tQ.

Oy2P−OyP2

OyP3 t+c2,

where the constants c1 and c2 can be expressed in terms of the moments
of r. More generally, all the cumulants of Nt scale as t, as would be the
case for the sum of t independent random variables, and therefore Nt obeys
the central limit theorem. (21, 22)
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(ii) Broad distributions of intervals with index h < 1
Using equation (1.8), (3.4) yields

ONtP %
tQ.

sin ph
ph
1 t
y0
2h, (3.6)

while (3.5) yields ON2
tP ’ t2h. More generally one expects that the cumulant

of order k of Nt scales as tkh. Indeed, setting

Nt=
(t/y0)h

C(1−h)
Xt,

where we keep the same notation Xt for the scaling variable, we obtain,
using (1.8) and

pn(t)=F
ds
2pi

e str̂(s)n
1− r̂(s)
s

, (3.7)

the limiting distribution of Xt, as tQ.,

fX(x)=F
dz
2pi

zh−1ez−xzh (0 < x <.). (3.8)

For small x, expanding the integrand in the right side and folding the
contour around the negative real axis yields

fX(x) =
xQ 0

1
C(1−h)

−
x

C(1−2h)
+· · ·

At large x, applying the steepest-descent method, we find the stretched
exponential fall-off

fX(x) ’
xQ.

exp(−(1−h)(hhx)1/(1−h)),

which demonstrates that all the moments of X are finite.
For h=1/2, the distribution of X is given by a half Gaussian:

fX(x)=
e −x2/4

`p
(0 < x <.).
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(iii) Broad distributions of intervals with index 1 < h < 2
Using equation (1.8), we obtain

ONtP %
tQ.

t
OyP

+
yh0

(h−1)(2−h)OyP2 t
2−h, (3.9)

ON2
tP−ONtP

2 %
tQ.

2yh0
(2−h)(3−h)OyP3 t

3−h. (3.10)

The fluctuations of the variable Nt around its mean t/OyP are therefore no
longer characterized by a single scale. These fluctuations are very large as
we now show.

We set, still keeping the same notation Xt for the scaling variable,

Nt=
t

OyP
+
y0

OyP
1 −C(1−h) t

OyP
21/h Xt. (3.11)

Then, using equations (1.8) and (3.7), we obtain the limiting distribution of
Xt, as tQ.,

fX(x)=F
dz
2pi

e −zx+zh. (3.12)

For large positive values of x, fX falls off exponentially as

fX(x) ’
xQ+.

exp 1 −(h−1) 1x
h
2h/(h−1)2 .

For large negative values of x, linearizing the integrand of equation (3.12)
with respect to zh, and folding the contour around the negative real axis,
we find

fX(x) %
xQ −.

|x| −h−1

C(−h)
.

As a consequence, OXtP is finite, and all higher order moments diverge.
Actually OXtP vanishes, as seen from (3.9) and (3.11), because the differ-
ence of exponents 2−h−1/h=−(h−1)2/h is negative. One can also
check on (3.10) that OX2

tP is divergent, since the difference of exponents
3−h−2/h=(h−1)(2−h)/h is now positive.

In the limit hQ 2, fX is a Gaussian:

fX(x) Q
hQ 2

e −x2/4

2`p
.

Related considerations can be found in ref. 20, vol. 2, p. 373.
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4. EPOCH OF LAST RENEWAL tN

We begin our study of the distributions of the random variables tN, Bt,
Et, T

±
t , and St appearing in section 2 by the example of tN, the epoch of the

last renewal before t.
This quantity is the sum of a random number Nt of random variables

y1, y2, ..., i.e., it is a function of the joint random variables {y1, y2, ..., yN}.
Now, the latter are not independent, although the intervals y1, y2, ... are, by
definition, independent. This is due to the very definition of Nt. Indeed if,
say, Nt takes the value n, then the sum tn=;n

i=1 yi is constrained to be less
than t. Therefore, in particular, each individual interval yi is constrained to
be less than t.

These considerations will be now made more precise, by the computa-
tion of the distribution of tN, below, and by that of the joint probability
density function of {y1, y2, ..., yN} and Nt, in the next section.

The joint probability distribution ftN, N of the random variables tN and
Nt reads

ftN, N(t; y, n)=
d
dy

P(tN < y, Nt=n)=Od(y−tN) I(tn < t < tn+1)P,

from which one deduces the density ftN of tN

ftN(t; y)=
d
dy

P(tN < y)=Od(y−tN)P=C
.

n=0
ftN, N(t; y, n).

In Laplace space, where s is conjugate to t and u to y,

L
t, y
ftN, N(t; y, n)=f̂tN, N(s; u, n)=7e −utn F

tn+1

tn
dt e −st8

=r̂(s+u)n
1− r̂(s)
s

(n \ 0). (4.1)

The distribution (3.3) of Nt is recovered by setting u=0 in (4.1). Summing
over n gives the distribution of tN, in Laplace space:

L
t
Oe −utNP=f̂tN(s; u)=

1
1− r̂(s+u)

1− r̂(s)
s

, (4.2)

which is normalized since f̂tN(s; u=0)=1/s.
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The case where the distribution of intervals r(y) is broad, with h < 1
(see equation (1.8)), is of particular interest since it leads to a limiting dis-
tribution for the random variable tN/t.

In the long-time scaling regime, where t and tN are both large and
comparable, or u, s small and comparable, we get

f̂tN(s; u) % s
h−1 (s+u) −h.

This yields, using the method of appendix B, the limiting distribution for
the rescaled variable t −1tN, as tQ.,

lim
tQ.

ft−1tN(x)=
sin ph
p

xh−1(1−x) −h=bh, 1−h(x) (0 < x < 1), (4.3)

with x=y/t, and where

ba, b(x)=
C(a+b)
C(a) C(b)

xa−1(1−x)b−1

is the beta distribution on [0, 1]. As a consequence

OtNP %
tQ.
ht. (4.4)

In the particular case h=1
2 , we have

lim
tQ.

ft−1tN(x)=
1

p`x(1−x)
, (4.5)

which is the arcsine law on [0, 1]. This is a well-known property of Brow-
nian motion. (20)

5. INTERDEPENDENCE OF {y1, ..., yN}

The purpose of this section is to identify the interdependence of the Nt

first time intervals {y1, y2, ..., yN}, a point both of conceptual and of prac-
tical importance (see e.g. ref. 26).

In order to do so, we compute the joint probability distribution of
these random variables and of Nt, denoted by

f{y1, y2, ..., yN}, N(t; y1, y2, ..., yn, n).
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Generalizing the calculations done above, one has, in the Laplace space of
all temporal variables,

f̂{y1, y2, ..., yN}, N(s; u1, ..., un, n)=7D
n

i=1
e −uiyi F

tn+1

tn
dt e −st8,

resulting in

f̂{y1, y2, ..., yN}, N(s; u1, u2, ..., un, n)=
1− r̂(s)
s

D
n

i=1
r̂(s+ui) (n \ 0),

where the empty product is equal to 1 for n=0.
The marginal distribution (3.3) of Nt can be recovered by setting all

the ui=0 in the above expression. By inversion with respect to the
variables {ui}, one gets

f̂{y1, y2, ..., yN}, N(s; y1, y2, ..., yn, n)=
1− r̂(s)
s

D
n

i=1
r(yi) e −syi (5.1)

and finally

f{y1, y2, ..., yN}, N(t; y1, y2, ..., yn, n)=1D
n

i=1
r(yi)2 P(Nt− tn=0) G(t− tn),

where G(x) is Heaviside step function. This expression clearly exhibits the
interdependence of the random variables {y1, y2, ..., yN}.

Let us investigate the distribution of any one of the yi, say y1. We
denote this random variable by yt in order to enhance the fact that its dis-
tribution is constrained. By integration of (5.1) on y2, y3, ..., yn, we obtain
the joint distribution of Nt and yt in Laplace space:

f̂yt, N(s; y, n)=
1− r̂(s)
s

×3 r̂(s)
n−1 e −syr(y) (n \ 1),

d(y) (n=0),

from which one deduces, by summation upon n, that

f̂yt(s; y)=r(y)
e −sy

s
+d(y)

1− r̂(s)
s

. (5.2)

This can be finally inverted, yielding

fyt(t; y)=r(y) G(t− y)+d(y) p0(t). (5.3)
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This result can be interpreted as follows. The a priori distribution r(y) is
unaffected as long as y is less than the observation time t. The complemen-
tary event, which has probability p0(t), corresponds formally to y=0.

As a consequence of (5.2) and (5.3) we have

L
t
OytP=

1
s
F
.

0
dy y r(y) e −sy=−

1
s
dr̂(s)
ds

, (5.4)

and

OytP=F
.

0
dy y fyt(t; y)=F

t

0
dy y r(y)=OyP−F

.

t
dy y r(y), (5.5)

where the last expression holds when the a priori average OyP is finite.
Let us discuss the above results according to the nature of the distri-

bution of intervals r(y).

(i) Narrow distributions of intervals
If the distribution r is narrow, then (5.5) shows that OytP converges to

OyP very rapidly. For instance, if r is exponential, then OytP=
[1−(1+lt) e −lt]/l: the decay of OyP−OytP, with OyP=1/l, is exponen-
tial.

(ii) Broad distributions of intervals with index h < 1
If the distribution r is broad, with h < 1, then from (5.4)

OytP %
tQ.

hyh0

1−h
t1−h.

The interpretation of this last result is that tN ’ t is the sum of Nt ’ th time
intervals yt ’ t1−h. However OtNP — ONtytP ] ONtPOytP (see equations (3.6)
and (4.4)).

(iii) Broad distributions of intervals with index 1 < h < 2
We now obtain

OytP %
tQ.

OyP−
hyh0

h−1
t −(h−1),

showing that OytP converges to OyP very slowly.
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6. BACKWARD AND FORWARD RECURRENCE TIMES

The distributions of Bt=t−tN and Et=tN+1−t can be obtained using
the methods of the previous sections. We have

fB, N(t; y, n)=Od(y−t+tn) I(tn < t < tn+1)P,

fE, N(t; y, n)=Od(y−tn+1+t) I(tn < t < tn+1)P.

In Laplace space, where s is conjugate to t and u to y,

L
t, y
fB, N(t; y, n)=f̂B, N(s; u, n)=7F

tn+1

tn
dt e −ste −u(t− tn)8 ,

L
t, y
fE, N(t; y, n)=f̂E, N(s; u, n)=7F

tn+1

tn
dt e −ste −u(tn+1−t)8 ,

hence, for n \ 0,

f̂B, N(s; u, n)=r̂(s)n
1− r̂(s+u)
s+u

,

f̂E, N(s; u, n)=r̂(s)n
r̂(s)− r̂(u)
u−s

,

and therefore

f̂B(s; u)=
1− r̂(s+u)
s+u

1
1− r̂(s)

, (6.1)

f̂E(s; u)=
r̂(u)− r̂(s)
s−u

1
1− r̂(s)

. (6.2)

Equations (6.1) and (4.2) are related by f̂B(s; u)=f̂tN(s+u; −u), express-
ing the identity tN+Bt=t.

We now discuss the above results according to the nature of the dis-
tribution r(y).

(i) Narrow distributions of intervals
For distributions with finite moments, equilibrium is attained at long

times, for both the backward and forward recurrence times, with a
common distribution given in Laplace space by

f̂B, eq(u)=f̂E, eq(u)=lim
sQ 0

sf̂B(s; u)=lim
sQ 0

sf̂E(s; u)=
1− r̂(u)
OyPu

. (6.3)
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By inversion we obtain

fB, eq(y)=fE, eq(y)=
1

OyP
F
.

y
dy r(y)=

p0(y)
OyP

. (6.4)

In the particular case where r is exponential, inversion of (6.1) yields,
for finite t,

fB(t; y)=le −lyG(t−y)+e −ltd(t−y).

The weight of the second term is simply P(Bt=t)=p0(t). Similarly, by
inversion of (6.2), we have

fE(t; y)=fE, eq(y)=fB, eq(y)=le −ly=r(y).

(ii) Broad distributions of intervals with index h < 1
We obtain, in the long-time scaling regime, i.e., for u, s small and

comparable,

f̂B(s; u) % s −h(s+u)h−1,

which, by inversion, using the method of appendix B, yields the limiting
distribution

lim
tQ.

ft−1B(x)=
sin ph
p

x −h(1−x)h−1=b1−h, h(x) (0 < x < 1). (6.5)

This result is consistent with (4.3). Similarly,

f̂E(s; u) %
uh−sh

sh(u−s)
,

yielding

lim
tQ.

ft−1E(x)=
sin ph
p

1
xh(1+x)

(0 < x <.). (6.6)

Let us point out that the limiting distribution of t/tN+1, as tQ., is given
by (4.3).

For h=1
2 , we obtain

lim
tQ.

ft−1B(x)=
1

p`x(1−x)
(0 < x < 1),
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which is the arcsine law on [0, 1]. Similarly

lim
tQ.

ft−1E(x)=
1

p(1+x)`x
(0 < x <.).

(iii) Broad distributions of intervals with index 1 < h < 2
The backward and forward recurrence times still admit the common

limiting distribution (6.4), which in the present case has the following
asymptotic behavior

fB, eq(y)=fE, eq(y) %
yQ.

1
OyP
1y0
y
2h, (6.7)

characteristic of a broad distribution of index h−1 < 1. In other words, at
equilibrium the average backward and forward recurrence times diverge.
However their long-time behavior can be computed from (6.1) and (6.2),
yielding

L
t
OBtP=

1− r̂(s)+s dr̂(s)/ds
s2(1− r̂(s))

, L
t
OEtP=

r̂(s)−1+OyPs
s2(1− r̂(s))

,

from which it follows that

OBtP %
tQ.

yh0

(2−h)OyP
t2−h, OEtP %

tQ.

yh0

(h−1)(2−h)OyP
t2−h.

7. OCCUPATION TIME AND MEAN MAGNETIZATION

The central investigation of the present work concerns the determina-
tion of the distributions of the occupation times T ±

t and of the sum St (or
of the mean magnetizationMt).

Let us denote by fs0T± and fs0S the probability density functions of these
quantities for a fixed value of s0 — st=0, and by fT± and fS the corre-
sponding probability density functions after averaging over s0=±1 with
equal weights:

f=1
2 (f

++f −).

The symmetry properties (2.3) and (2.4) imply that

fT+(t; y)=fT− (t; y), fS(t; y)=fS(t; −y). (7.1)
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Following the methods used in the previous sections, we define the
joint probability distribution of T+

t and Nt at fixed s0 as

fs0T+, N(t; y, n)=
d
dy

P(T+
t < y, Nt=n)=Od(y−T+

t ) I(tn [ t < tn+1)P,

and

fs0T+(t; y)=C
.

n=0
fs0T+, N(t; y, n)=Od(y−T+

t )P.

For s0=+1, Laplace transforming with respect to t and y, using equa-
tions (2.1) and (2.2), we find

f̂+
T+, N(s; u, 2k+1)=r̂

k+1(s+u) r̂k(s)
1− r̂(s)
s

,

f̂+
T+, N(s; u, 2k)=r̂

k(s+u) r̂k(s)
1− r̂(s+u)
s+u

,

hence, summing over k,

f̂+
T+(s; u)=11− r̂(s+u)

s+u
+r̂(s+u)

1− r̂(s)
s
2 1
1− r̂(s) r̂(s+u)

.

Using the property T −
t =t−T+

t , and (7.1), we get

f̂T+(s; u)=1
2 (f̂

+
T+(s; u)+f̂+

T+(s+u; −u))=f̂T+(s+u; −u).

Similarly, using the property St=2T+
t −t, and (7.1), we get

f̂S(s; u)=f̂S(s; −u)=f̂T+(s−u; 2u).

(Here f̂S(t; u) is the bilateral Laplace transform with respect to y. See
appendix A for the notation.)

The final results read

f̂T± (s; u)=
2s(1− r̂(s+u) r̂(s))+u(1+r̂(s+u))(1− r̂(s))

2s(s+u)(1− r̂(s+u) r̂(s))
,

f̂S(s; u)=
s(1− r̂(s+u) r̂(s−u))+u( r̂(s+u)− r̂(s−u))

(s2−u2)(1− r̂(s+u) r̂(s−u))
.

(7.2)
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Let us discuss these results according to the nature of the distribution
of intervals r(y).

(i) Narrow distributions of intervals
If the distribution r is narrow, implying that the correlations between

the sign process st at two instants of time are short-ranged (see section 9),
it is intuitively clear that St should scale as the sum of t independent
random variables and therefore obey the central limit theorem. In the
context of the present work, we are especially interested in large deviations,
i.e., rare (persistent) events where St deviates from its mean. In particular,
the probability that St is equal to t is identical to p0(t), the persistence
probability. These points are now made more precise.

First, expanding the right-hand side of (7.2) to second order in u, and
performing the inverse Laplace transform, yields

OS2
tP %

tQ.

Oy2P−OyP2

OyP
t. (7.3)

More generally, it can be checked that all the cumulants of St scale as t.
Then,

f̂S(t; u)=Oe −uStP=eKS(t; u) ’
tQ.

e tF(u), (7.4)

where KS(t; u) is the generating function of cumulants of St, and F(u) is
determined below. By inversion of (7.4),

fS(t; y) ’
tQ.

F
du
2ip

euy+tF(u).

In the large-deviation regime, i.e., when t and y are simultaneously large
and x=y/t finite, the saddle-point method yields

fM(t; x) ’
tQ.

F
du
2ip

e t[ux+F(u)] ’
tQ.

e −tS(x),

where

S(x)=−min
u
(ux+F(u)) (−1 < x < 1)

is the large-deviation function (or entropy) forMt. The functions S(x) and
F(u) are mutual Legendre transforms:

S(x)+F(u)=−ux, u=−
dS
dx
, x=−

dF
du
.
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Equation (7.4) implies that f̂S(s; u) is singular for s=F(u), and there-
fore, using (7.2), that

r̂(F(u)+u) r̂(F(u)−u)=1, (7.5)

which determines implicitly F(u). For uQ 0, using r̂(u) % 1−uOyP+
1
2 u

2Oy2P, equation (7.5) gives

F(u) %
uQ 0

Oy2P−OyP2

2OyP
u2,

hence

S(x) %
xQ 0

OyP

2(Oy2P−OyP2)
x2,

yielding a Gaussian distribution for St, thus recovering the central limit
theorem for this quantity.

In the particular case of an exponential distribution r(y), all results
become explicit. We have

f̂S(s; u)=
2l+s

s2+2ls−u2 ,

and

F(u)=`l2+u2 −l, S(x)=l(1−`1−x2 ).

(ii) Broad distributions of intervals with index h < 1
Using equation (1.8), we have, in the long-time scaling regime where u

and s are small and comparable,

f̂S(s; u) %
(s+u)h−1+(s−u)h−1

(s+u)h+(s−u)h
,

which, by inversion, using the method of appendix B, yields, as tQ., the
limiting distribution for the mean magnetizationMt,

fM(x)=
2 sin ph
p

(1−x2)h−1

(1+x)2h+(1−x)2h+2 cos ph(1−x2)h
. (7.6)

For xQ 0, the expansion

fM(x)=
2 tan(ph/2)

p
11+cos2(ph/2)−h2

cos2(ph/2)
x2+· · · 2
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shows that x=0 is a minimum of fM(x) for h < hc, while it is a maximum
for h > hc, with hc=cos(phc/2), yielding hc=0.594611. (24)

For xQ ±1, fM(x) diverges as

fM(x) %
xQ ±1

%
sin ph
p

2 −h(1 + x)h−1. (7.7)

Comparing the amplitude of this power-law divergence to that of the
symmetric beta distribution over [−1, 1] of same index,

b(x)=
C(h+1

2)

C(h)`p
(1−x2)h−1,

we have

lim
xQ ±1

fM(x)
b(x)

=B(h)=
C(h)

C(2h)C(1−h)
.

The amplitude ratio B(h) decreases from B(0)=2 to B(1)=0; it is equal to
1 for h=1

2 (see equation (7.9)).
Equation (B5) yields the moments of fM,

OM2P=1−h, OM4P=1−
h

3
(4−h2), OM6P=1−

h

15
(23−10h2+2h4),

(7.8)

and so on.
In the particular case h=1

2 , equation (7.6) simplifies to

fM(x)=
1

p`1−x2
=b(x), (7.9)

which is the arcsine law on [−1, 1].
The corresponding distribution for the occupation time is

lim
tQ.

ft−1T± (x)=
sin ph
p

xh−1(1−x)h−1

x2h+(1−x)2h+2 cos ph xh(1−x)h
, (7.10)

a result originally found by Lamperti. (5) If h=1
2 , the arcsine law on [0, 1] is

recovered:

lim
tQ.

ft−1T+(x)=
1

p`x(1−x)
.
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A last point is that, in the persistence region, i.e., for Mt Q 1 and
tQ., fM(t; x) has a scaling form, as we now show. Two limiting behav-
iors are already known:

(i) forMt=1, fM(t; x)=
1
2 p0(t) d(x−1), with p0(t) ’ (t/y0)

−h;
(ii) for t=., the limiting distribution fM(x) is given by equation

(7.7).
In order to interpolate between these two behaviors, we assume the

scaling form

fM(t; x) ’ 1
t
y0
21−h h 1z=(1−x)

t
y0
2 ,

in the persistence region defined above, with z fixed. The known limiting
behaviors imply

h(z) %
zQ.

2 −h sin ph
p

zh−1, h(z) %
zQ 0

1
2
d(z). (7.11)

The scaling function h(z) can be computed in Laplace space as
follows. We have

f̂S(t; u)=Oe −uStP=1y0
t
2h e −ut F

.

0
dz euy0zh(z).

Laplace transforming with respect to t, yields, in the limit s+uQ 0, with
u=O(1), since z is finite,

f̂S(s; u) % a(s+u)h−1 F
.

0
dz euy0zh(z).

By identification of this expression with the corresponding estimate
obtained in the same regime from (7.2), we have, with v=−2u,

1+r̂(v)
2(1− r̂(v))

=F
.

0
dz e −1

2 vy0zh(z)=ĥ 1vy0
2
2 .

As a consequence, the function h(z) is non universal since it depends on the
details of the function r(y). Universality is restored only in the two limits
considered above (see (7.11)).
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(iii) Broad distributions of intervals with index 1 < h < 2
Using equation (1.8), (7.2) yields

f̂S(s; u) %
2OyP−a((s+u)h−1+(s−u)h−1)
2OyPs−a((s+u)h+(s−u)h)

, (7.12)

in the scaling regime where both Laplace variables s and u are simulta-
neously small and comparable. Expanding this expression as a Taylor series
in u, and performing the inverse Laplace transform term by term, we
obtain, for the first even moments of the random variable St,

OS2
tP %

tQ.

2yh0
(2−h)(3−h)OyP

t3−h,

OS4
tP %

tQ.

4yh0
(4−h)(5−h)OyP

t5−h. (7.13)

This demonstrates that, in the long-time regime, the asymptotic distribu-
tion of St is broad, with slowly decaying tails. This distribution can be
evaluated as follows.

We first notice that equation (7.12) further simplifies for |u|± s. In
order for both variables of f̂S(s; u) to stay in the appropriate domains, we
consider s > 0 and u=iw, with w real. We thus obtain, in the relevant
regime (s° |w|° 1),

f̂S(s; u) %
1

s+c |w|h
,

with

c=−
a

OyP
cos(ph/2)=

p yh0

2C(h) sin(ph/2)OyP
.

In other words, we have the scaling s ’ |u|h, or, for the typical value of St,

(St)typ ’ t1/h.

The distribution of St is then given, for y small and t large, by the
double inverse Laplace transform

fS(t; y) % F
ds
2pi

e st F
+.

−.

dw
2p

e iwy

s+c |w|h
% F

+.

−.

dw
2p

e iwy−c|w|ht.
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Setting

St=(ct)1/hXt, (7.14)

we conclude that the scaling variable Xt has a nontrivial even limiting dis-
tribution, as tQ., with argument x=y/(ct)1/h,

fX(x)=Lh(x)=F
+.

−.

da
2p

e iax− |a|h. (7.15)

This distribution is the symmetric stable Lévy law Lh of index h. Expanding
the integrand in the right side as a Taylor series in x yields the convergent
series

Lh(x)=
1
ph

C
.

k=0
(−1)k

C((2k+1)/h)
(2k)!

x2k.

For large values of x, Lh(x) falls off as a power law,

Lh(x) %
xQ ±.

C(h+1) sin(ph/2)
p

|x| −h−1,

as obtained by expanding e −|a|h as 1− |a|h in equation (7.15). As a con-
sequence, the second moment of this distribution is divergent.

To summarize, the bulk distribution of St is given by Lh(x), with the
scaling (7.14), while the moments of St scale as (7.13). These two kinds of
behavior are actually related, as shown by the following simple reasoning.
Using (7.14), we have

OS2
tP ’ t2/hOX2

tP ’ t2/h F
xc

−xc
dx x2 Lh(x) ’ t2/h x

2−h
c , (7.16)

where xc is an estimate for x in the tails. Since xc ’ Sc/t1/h with Sc ’ t, by
definition (1.2) of St, we finally obtain OS2

tP ’ t3−h as in (7.13). Note that,
since 2/h < 3−h, the typical value of S2

t is much smaller than its average,
at large times. A similar situation arises in a model considered in ref. 27.
We are indebted to J.P. Bouchaud for pointing this to us.

This argument can be generalized to the calculation of non-integer
moments of St, yielding

O|St |pP ’ tc(p),
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with c(p)=p/h if p [ h, and c(p)=p+1−h if p \ h, a behavior charac-
teristic of a bifractal distribution.

In the limits hQ 1 and hQ 2, Lh becomes respectively a Cauchy and a
Gaussian distribution,

Lh(x) Q
hQ 1

1
p(1+x2)

, Lh(x) Q
hQ 2

e −x2/4

2`p
.

8. NUMBER OF RENEWALS BETWEEN TWO ARBITRARY TIMES

Consider the number of events N(t, t+tŒ)=Nt+tŒ−Nt occurring
between t and t+tŒ. The probability distribution of this random variable is
denoted by

pn(t, t+tŒ)=P(N(t, t+tŒ)=n).

The time of occurrence of the n-th event, counted from time t, is
denoted by t −n, with, by convention, t −0=0. By definition of the forward
recurrence time Et, the first event after time t occurs at time t −1=Et, when
counted from time t. Hence the time of occurrence of the last event before
t+tŒ, counted from t, reads

t −N(t, t+tŒ)=Et+y2+· · ·+yN(t, t+tŒ).

Therefore,

pn(t, t+tŒ)=P(t −n < t
− < t −n+1)=OI(t −n < t

− < t −n+1)P (n \ 0). (8.1)

In particular, for n=0, we have

p0(t, t+tŒ)=P(Et > tŒ)=F
.

t−
dy fE(t; y), (8.2)

which is the persistence probability up to time t+tŒ, counted from the
waiting time t.

In Laplace space, where u is conjugate to tŒ, we thus obtain

L
tŒ
pn(t, t+tŒ)=p̂n(t, u)=f̂E(t; u) r̂(u)n−1 1− r̂(u)

u
(n \ 1),

L
tŒ
p0(t, t+tŒ)=p̂0(t, u)=

1−f̂E(t; u)
u

,

(8.3)

where f̂E(t; u) is the Laplace transform of fE(t; y) with respect to y.
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We discuss the results above according to the nature of the distribu-
tion of intervals r(y).

(i) Narrow distributions of intervals
As seen in section 6, the renewal process reaches equilibrium at long

times, with, for the forward recurrence time,

f̂E, eq(u)=
1− r̂(u)
OyPu

, fE, eq(y)=
1

OyP
F
.

y
dy r(y).

Therefore the equilibrium distribution of the random variable N(t, t+tŒ)
no longer depends on t. In particular, the average of N(t, t+tŒ) is equal to
tŒ/OyP.

For an exponential distribution of time intervals, we have

pn(t, t+tŒ)=e −ltŒ (ltŒ)
n

n!
(n \ 0),

which is independent of t, showing that the Poisson point process is at
equilibrium at all times.

(ii) Broad distributions of intervals with index h < 1
We restrict the discussion to the probability p0(t, t+tŒ). In the scaling

regime where t and tŒ are large and comparable, we have, according to
equations (8.2) and (6.6),

p0(t, t+tŒ) % F
.

tŒ/t
dx lim

tQ.
ft−1E(x)=

sin ph
p

F
.

tŒ/t
dx

1
xh(1+x)

=F
t/(t+tŒ)

0
dx bh, 1−h(x)=g11

t
t+tŒ
2 . (8.4)

In particular, in the regime of large separations between t and t+tŒ, we
obtain the aging form of the persistence probability:

p0(t, t+tŒ) %
1° t° tŒ

sin ph
ph
1 tŒ
t
2 −h.

For example, for h=1
2 ,

p0(t, t+tŒ)=
2
p
arc tan= t

tŒ
=
2
p
arc sin= t

t+tŒ
. (8.5)
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One can also compute

L
t, tŒ

ON(t, t+t −)P=C
.

0
n p̂n(s, u)=

r̂(s)− r̂(u)
u(u−s)(1− r̂(u))(1− r̂(s))

,

or alternatively use (3.6), to find, in the same regime (1° t ’ tŒ),

ON(t, t+tŒ)P %
sin ph
ph

(t+tŒ)h−th

yh0
. (8.6)

A consequence of (8.4) and (8.6) is that, for 1° tŒ° t, the probability of
finding an event between t and t+tŒ goes to zero. In other words, in order
to have a chance to observe a renewal, one has to wait a duration tŒ of
order t. The intuitive explanation is that, as t is growing, larger and larger
intervals of time y may appear. The density of events at large times is
therefore decreasing.

(iii) Broad distributions of intervals with index 1 < h < 2
First, equations (6.7) and (8.2) imply that, for 1° tŒ° t,

p0, eq(t, t+tŒ) %
yh0

(h−1)OyP
t −−(h−1). (8.7)

Then, in the scaling regime where t and tŒ are large and comparable, we
obtain, using equations (6.2) and (8.3),

p̂0(s, u) %
a

OyP

sh−1−uh−1

s(s−u)
,

which by inversion yields

p0(t, t+tŒ)=
yh0

(h−1)OyP
(t −−(h−1)−(t+tŒ) −(h−1)). (8.8)

For 1° tŒ° t we recover (8.7), while for 1° t° tŒ we obtain

p0(t, t+tŒ) %
1° t° tŒ

yh0t
OyP

tŒ −h.

Equation (8.8) can be rewritten in scaling form as

p0(t, t+tŒ)=
yh0

(h−1)OyP
t −(h−1)g21

t
t+tŒ
2, (8.9)
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with

g2(x)=xh−1((1−x) −(h−1)−1). (8.10)

9. TWO-TIME AUTOCORRELATION FUNCTION

The two-time autocorrelation function of the s-process reads

C(t, t+tŒ)=Ostst+t−P=C
.

n=0
(−1)n pn(t, tŒ).

In Laplace space, using (8.3), one gets

L
tŒ
C(t, t+tŒ)=Ĉ(t, u)=

1−f̂E(t; u)
u

−f̂E(t; u)
1− r̂(u)
u(1+r̂(u))

=
1
u
11−f̂E(t; u)

2
1+r̂(u)
2 . (9.1)

(i) Narrow distributions of intervals
At equilibrium, using (6.3), we have

Ĉeq(u)=
1
u
11− 2(1− r̂(u)(

OyP u(1+r̂(u))
2.

Expanding the right side as a Taylor series in u yields the sum rules

F
.

0
dtŒCeq(tŒ)=

Oy2P−OyP2

2 OyP
, F

.

0
dtŒtŒ Ceq(tŒ)=

Oy3P

6 OyP
−
Oy2P

2
+
OyP2

4
.

(9.2)

Since the second expression can be either positive or negative, depending
on the detailed form of the distribution r(y), the equilibrium correlation
function Ceq(tŒ) is neither positive nor monotonic in general.

For an exponential distribution r, one has

C(t, t+tŒ)=e −2ltŒ

which is independent of t, reflecting once again the fact that the process is
at equilibrium at all times.
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(ii) Broad distributions of intervals
In the regime where s ’ u° 1, the first term in the first line of equa-

tion (9.1) dominates upon the second one for any 0 < h < 2, so that we
have

C(t, t+tŒ) % p0(t, t+tŒ),

with p0(t, t+tŒ) given by (8.4) for h < 1, and by (8.8) or (8.9) for 1 < h < 2.
Let us finally remark that, from the knowledge of the two-time auto-

correlation C(t, t+tŒ), we can recover the asymptotic behavior of OS2
tP, or

of OM2
tP, respectively given by equations (7.3), (7.8) and (7.13), according

to the nature of the distribution of intervals r. Indeed, by definition of St

(see equation (1.2)), we have

OS2
tP=F

t

0
dt2 F

t

0
dt1 C(t1, t2).

For a narrow distribution r, this yields, as tQ.,

OS2
tP % 2t F

.

0
dtŒ Ceq(tŒ),

which, using (9.2) leads to (7.3). For a broad distribution r with h < 1, we
have, in the long-time scaling regime

OS2
tP % 2t2 F

1

0
dy2 F

y2

0
dy1 C 1

y1

y2
2=t2 F

1

0
dx g1(x), (9.3)

where g1(x) is given in (8.4). A simple calculation then leads to OM2P as in
(7.8). For a broad distribution r with 1 < h < 2, using (8.9), we find

OS2
tP % t3−h

2yh0
(h−1)(3−h)OyP

F
1

0
dx x −(h−1) g2(x),

yielding, after integration, the first line of (7.13).

10. SUMMARY AND FINAL REMARKS

This article is devoted to the study of the occupation times T ±
t , and

mean magnetization Mt, of renewal processes, that is, processes with inde-
pendent intervals of time between events, interpreted as the zero crossings
of the stochastic process st=±1. We also compute the distributions of the
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random variables naturally associated to a renewal process, such that the
number of events Nt occurring between 0 and t, the epoch tN of the last
event before t, the backward and forward times Bt and Et. We finally
investigate the number of events occurring between two arbitrary instants
of time, and the two-time autocorrelation function.

The present work is also instructive for the understanding of the role
of correlations on the behavior of the distributions of sums of random
variables. Here the random variables are the signs st=±1, and

St — t Mt=F
t

0
dt − st− (10.1)

is therefore the sum of temporally correlated random variables.
Three cases are to be considered for the discussion of the results,

according to the nature of the distribution r(y) of the intervals of time
between the renewal events.

The case where r is narrow corresponds to the domain of application
of the central limit theorem. Correlations between values of the sign
process st at two different instants of time are short-ranged. All the obser-
vables of interest mentioned above have narrow distributions, as well. In
particular,

(St)typ ’ t1/2,

and the limiting distribution of St/t1/2 is Gaussian. The persistence proba-
bility p0(t), i.e., the probability that no event occurred up to time t,
decreases, as tQ., faster than a power law.

The case where r is broad, with index h < 1, corresponds to a
maximum violation of the central limit theorem. The particular case where
h=1

2 accounts for Brownian motion. Correlations are long-ranged:

Ostst+t−P ’ g11
t

t+t −
2, (10.2)

where the scaling function behaves as (t −/t) −h in the regime of large
separation (1° t° t −). The number Nt of events between 0 and t scales as
th. The random variables tN, Bt, Et, T

±
t and St, have limiting distributions,

as tQ., once rescaled by t. In particular, focusing on St, the scaling
behavior (10.2) implies that

(St)typ ’ t. (10.3)
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The limiting distribution of St/t —Mt is given by equation (7.6). It is a
U-shaped curve for h < hc % 0.59, while its maximum is at zero, for h > hc. It
is singular at Mt=±1, with an exponent equal to h−1. The probability,
p0(t), that no event occurred up to time t, decreases as t −h, while the
probability, p0(t, t+t −), that no event occurred between t and t+t −, behaves
as (t −/t) −h in the regime 1° t° t −. (We remind that in the long-time
scaling regime, Ostst+t−P % p0(t, t+t −).)

The case where r is broad, with index 1 < h < 2, is intermediate.
Correlations are again long-ranged:

Ostst+t−P ’ t −(h−1)g21
t

t+t −
2 , (10.4)

where the scaling function behaves as (tŒ/t) −h in the regime of large
separation (1° t° t −). The law of Nt, centered at t/OyP, and rescaled by
t1/h, is broad, with index h. As tQ., Bt and Et have equilibrium distribu-
tions, which are broad, with index h−1. The scaling behavior (10.4) implies
that

OS2
tP ’ t3−h, (10.5)

while a more complete analysis leads to

(St)typ ’ t1/h, (10.6)

and shows that the limiting distribution of St/t1/h is the symmetric stable
Lévy law of index h. The existence of the two scales (10.5) and (10.6) is also
reflected in the bifractality of the distribution of St, in the sense that the
non-integer moments scale as

O|St |pP ’ tc(p),

with c(p)=p/h, if p < h, and c(p)=p+1−h, if p > h. Otherwise stated,
there is no ‘‘gap scaling’’ for the distribution of St (see below). The behav-
ior of p0(t) is the same as for the previous case h < 1. However, p0(t, t+t −),
though still decaying as tŒ −h in the regime 1° t° t −, is no longer given by
a scaling function of the ratio t/t+tŒ, as was the case when h < 1 (compare
equations (8.4) and (8.9)).

The three types of behavior summarized above, corresponding to a
narrow distribution r (i.e., formally h > 2), to a broad distribution with
h < 1, and to a broad distribution with 1 < h < 2, are reminiscent of the
three typical behaviors observed in the nonequilibrium dynamics of phase
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ordering, respectively at high temperature, at low temperature, and at cri-
ticality. Consider for instance a two-dimensional lattice of Ising spins
st=±1. At high temperature, correlations between spins are short-ranged,
and the analysis given above applies, i.e., the central limit theorem is
obeyed by St. For a quench from a disordered initial state to a temperature
below the critical temperature, the autocorrelation has a form similar to
(10.2), namely

Ostst+t−P ’ m2
eq g

Ising
1
1 t
t+t −
2 ,

where meq is the equilibrium magnetization. The scaling function g Ising
1

behaves as (tŒ/t) −l/z for 1° t° t −, where z=2 is the growth exponent,
and l % 1.25 is the autocorrelation exponent. Correspondingly (10.3) holds.
The limiting distribution of St/t —Mt is a U-shaped curve, with singularity
exponent, as Mt Q ±meq, equal to h−1, where h % 0.22 is the persistence
exponent at low temperature. (12)

Finally for a quench at the critical temperature, correlations have a
form similar to (10.4),

Ostst+t−P ’ t −2b/nzcg Ising
2
1 t
t+t −
2 , (10.7)

where b=1/8 and n=1 are the usual static critical exponents, and
zc % 2.17 is the dynamic critical exponent. The scaling function g Ising

2

behaves as (tŒ/t) −lc/zc for 1° t° t −, where lc % 1.59 is the critical auto-
correlation exponent (see e.g. ref. 18). However, in contrast with the situa-
tion encountered in the present work, one expects, by analogy with statics,
that the distribution of St is entirely described by one scale, given by
(St)typ=OS2

tP
1
2 ’ t1−b/nzc. In this sense, this distribution is a monofractal,

and gap scaling holds: all moments scale as O|St |pP ’ (St)
p
typ ’ t

c(p), with
c(p)=p(1−b/nzc). These expectations are confirmed by numerical com-
putations. (28)

Pursuing the comparison between the two situations, persistence for
coarsening systems decays faster than a power law at high temperature,
and as a power law at low temperature, as is the case for a renewal process,
respectively for r narrow, and for r broad, with h < 1. Again the status of
the intermediate case is different: while for the renewal processes under
study p0(t) is still decaying as t −h when 1 < h < 2, for critical coarsening
the decay of the probability that no spin flip occurred up to time t, p0(t), is
no longer algebraic.

To conclude, as we already mentioned, the methods introduced here
provide a basis for the study of similar questions for the stochastic process
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considered in ref. 25, and to some extent, for the random acceleration
problem. (29)

After completion of this article, we became aware of recent works in
probability theory on various quantities derived from Brownian motion,
whose distributions are proven to be beta laws, generalizing thus Lévy’s
arcsine law. (30)

A. A WORD ON NOTATIONS

Probability densities
Consider the time-dependent random variable Yt. We are interested in

the distribution function of this random variable, P(Yt < y), and in its
probability density function, denoted by fY, dropping the time dependence
of the random variable when it is in subscript,

fY(t; y)=
d
dy

P(Yt < y).

Time t appears as a parameter in this function.

Laplace transforms
Assume that Yt is positive. We denote the Laplace transform of

fY(t; y) with respect to y as

L
y
fY(t; y)=f̂Y(t; u)=Oe −uYtP=F

.

0
dy e −uy fY(t; y),

and the double Laplace transform of fY(t; y) with respect to t and y as

L
t, y
fY(t; y)=L

t
Oe −uYtP=f̂Y(s; u)=F

.

0
dt e −st F

.

0
dy e −uy fY(t; y).

In this work we encounter random variables Yt (such as St orMt) with
even distributions on the real axis, i.e., fY(t; y)= fY(t; −y). For these we
define the (bilateral) Laplace transform as

L
y
fY(t; y)=Oe −uYtP=F

.

−.
dy e −uy fY(t; y).

Limiting distributions
In a number of instances considered in this work, Yt scales asymptoti-

cally as t. Therefore, it is natural to define the scaling variable Xt=Yt/t,
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with density fX(t; x) — ft−1Y(t; x=y/t). As tQ., this density converges
to a limit, denoted by

fX(x)=lim
tQ.

ft−1Y(x).

These considerations hold similarly for other scaling forms of Yt.

B. INVERSION OF THE SCALING FORM OF A DOUBLE LAPLACE

TRANSFORM

Consider the probability density function fY(t; y) of the random
variable Yt, and assume that its double Laplace transform with respect to t
and y, defined in appendix A, has the scaling behavior

L
t, y
fY(t; y)=f̂Y(s; u)=

1
s
g 1u
s
2 (B.1)

in the regime s, uQ 0, with u/s arbitrary. Then the following properties
hold, as shown below.

(i) The random variable Xt=Yt/t possesses a limiting distribution
when tQ., i.e.,

fX(x)=lim
tQ.

ft−1Y(t; x=y/t). (B.2)

(ii) The scaling function g is related to fX by

g(t)=7 1
1+tX
8=F

.

−.
dx
fX(x)
1+tx

. (B.3)

(iii) This can be inverted as

fX(x)=−
1
px

lim
EQ 0

Im g 1 − 1
x+iE
2 . (B.4)

(iv) Finally the moments of fX can be obtained by expanding g(y) as
a Taylor series, since (B.3) implies that

g(t)=C
.

k=0
(−t)k OXkP. (B.5)

First, a direct consequence of the scaling form (B.1) is that Yt scales as
t, as can be seen by Taylor expanding the right side of this equation, which
generates the moments of Yt in the Laplace space conjugate to t. Therefore
(B.2) holds.
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Then, (B.3) is a simple consequence of (B.2), since

f̂Y(s; u)=F
.

0
dt e −stOe −uYP=F

.

0
dt e −stOe −ut XP=7 1

s+uX
8 .

Now,

fX(x)=Od(x−X)P=−
1
p
lim
EQ 0

Im 7 1
x+iE−X
8 .

The right side can be rewritten using (B.3), yielding (B.4).
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